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Abstract. A listing is proposed for the steps in the logic of dimensional analysis. Starting 
with the definition of a physical concept, the arguments proceed through the principles 
of measurement, by the specification of dimensional equality and the subsequent limitations 
of functional operations, up to a derivation of the Pi-theorem of this analysis. 

1. Introduction 

In 1931, Bridgman, in the second edition of his book on dimensional analysis, drew 
attention to the continued existence of ‘differences in fundamental points of view’. 
He repeated this view in 1959 by pointing out that there had ‘not by any means been 
agreement with regard to the philosophy of the subject, and many questions are still 
controversial’. His final contribution would appear to have been the joint one with 
Sedov in 1974; in it uncertainties, to be considered here, were still expressed. 

A previous paper (Gibbings 1980) contained a discussion of only some of the steps 
in the logic of dimensional analysis, without ordering those steps, and had accepted 
and used the results of Buckingham’s Pi-theorem (1914). The present paper lists and 
discusses, in a necessarily condensed form, a proposed complete order of logic up to 
and including the Pi-theorem. 

In summary, the order of logic to be advanced here is now listed in its successive 
stages. 

(i) The concept of a ‘primary’ physical quantity is defined. 
(ii) The unit reference quantity is defined. 
(iii) The measure of a ‘primary’ quantity is defined as addition of unit quantities. 
(iv) The measure by addition results in a linear scale. 
(v) The existence of linear scales together with common origins results in the 

constancy of relative magnitude. 
(vi) The concept of a ‘derived’ physical quantity is defined through either an 

arbitrary defining relation or an observed physical law. 
(vii) The definition of a ‘derived’ quantity being in terms of products of quantities- 

to include division and the raising to powers-then dimensions are combined also in 
the same products. 

(viii) The constancy of relative magnitude is then retained in such products; 
definition of ‘derived’ quantities not in terms of products is not accepted. 

(ix) The dimensions in products of quantities can be cancelled. 
(x) Dimensional equality is specified for numerical addition of quantities. 

0305-4470/82/071991+ 12$02.00 @ 1982 The Institute of Physics 1991 
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(xi) The arbitrary choice of unit quantity for a *derived’ quantity requires the 
introduction of a ‘units conversion factor’ to retain dimensional equality. 

(xii) The concept of the ‘complete’ equation follows from the specification of 
dimensional equality. 

(xiii) The retention of a ‘complete’ equation limits the functional operations that 
can be performed on it. 

(xiv) The appearance of ‘unit conversion factors’ in an equation is directly related 
to the inclusion of the corresponding defining relations in the analytical model. 

(xv) The foregoing of an arbitrary unit quantity for a derived quantity in an 
equation results in the removal of the corresponding ‘units conversion factor’. 

(xvi) Variables in an equation can be grouped in products, the limit to this grouping 
occurring when the products become non-dimensional. 

By no means are all these steps in the logic new. The purpose of this paper is to 
present this particular ordering and totality of the logic and to clarify some of the steps. 

2. Quantifying observation 

In science, concern is with observation of material things forming a system, as that 
term is defined in a generalised thermodynamic sense (Gibbings 1970), and in the 
way that they behave during a process. Quantification of the state of a system is by 
quantification of its properties and these properties derive from concepts. Then a 
first step is to define concepts. 

Two types of concept are proposed. Following a prior discussion (Gibbings 1980), 
concepts such as length and time, which in that discussion are defined in terms of 
what can be comprehended by the senses in a fundamental way, might be thought of 
as ‘primary’ concepts. In the same manner the concept of force could be defined as 
being sensed by a difference of loading, such as by holding a system against gravitational 
attraction. A unit quantity for each of these three ‘primary’ concepts can be defined 
quite independently of each other. For length it might be a dimension of a certain 
piece of material; for time it might be the interval of one swing of a certain pendulum; 
for force it might be the load to fully compress a certain spring. The measure of each 
of these ‘primary’ concepts is then specified as being by addition of these unit quantities: 
following the previous discussion (Gibbings 1980), the definition of measure of these 
‘primary’ concepts is separate from, though consequent upon, the definition of the 
concept. In this approach we follow Bacon (1868) who wrote ‘And it is a grand error 
to assert that sense is the measure of things’. 

Because of the independence of the ‘unit quantities’ it follows in principle that 
these three ‘primary’ concepts, length, time and force, can be measured without any 
reference to each other. This independence of measurement was advanced by Esnault- 
Pelterie (1950) as the definition of a ‘primary’ concept, rather than as here where the 
initial definition is as a sensed one. Here again we follow Bacon (1840) who wrote 
‘For information begins with the senses. But our whole work ends in Practice.. . ’. 
Also definition by the idea of independence of measurement does not seem to accord 
with the choice by Esnault-Pelterie of mass, rather than force as chosen here, as the 
third primary concept. 

The measure of ‘primary’ concepts by addition of ‘unit quantities’ results in a 
linear scale of measurement with a scale zero at zero amount. It then follows, as 
Bridgman (1943) pointed out, that the ratio of two quantities of the same concept is 
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independent of the size chosen for the ‘unit quantity’; there is a constancy of relative 
magnitude. 

From the definition of the measure of a primary concept, a multiple of the smallest 
distinguishable quantity is chosen as a convenient unit quantity. In principle, all other 
quantities are then taken as the arithmetical count of the content of smallest quantities. 

So far the first five logical steps listed have been considered. 
In contrast to ‘primary’ concepts, a concept such as velocity does not seem to be 

comprehensible in such a fundamental way, but is what might be called a ‘derived’ 
concept as its definition is in terms of the ratio of measures of the ‘primary’ concepts 
of length and of time. Similarly other ‘derived’ concepts can be defined in succession 
as shown in table 1 t, all as definitions of the measure of them in terms of the measure 
of other concepts$. 

Table 1. 

Number in defining relation 

Measures 

No Defining relation(s) Primary Derived Constants SI unit 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

2 
2 

1 a 
1 
1 
1 
1 

A 
1 M 

1 e 
1 C 
1 
1 n 

The defining relations are listed in this table and are seen to be of two kinds. One 
is a definition, the other is the expression of a physical law. Also listed are the number 
of measures involved in the defining relation. 

As previously mentioned (Gibbings 1980), this present approach differs from that 
of others. For example, Bridgman (1927) virtually proposed the definitions of all 
concepts to be inseparably linked with the definition of the measure of them as done 
here for only the ‘derived’ concept. It was because this approach raised difficulties 
for philosophers when considering the meanings of time and of extension that the 
present line of argument for primary quantities was previously advanced (Gibbings 
1980). 

A ‘primary’ concept is thus advanced as a sensed one, a ‘derived’ one is a definition 
of measurement in physics. This approach would appear to be consistent with Bridg- 
man’s view (1937, p 9) that ‘. . . operations which give meaning to our physical concepts 

t See the table of notation at the end of this paper. 
$ A  point also advanced by Esnault-Pelterie (1950, p 55). 
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should properly be physical operations, actually carried ou t . .  .’ as long as the oper- 
ations leading to the present definitions of primary concepts are recognised as not, in 
the first instance, requiring numerical measure. It is relevant that Bridgman goes on 
to say (1937, p 10) that ‘It must not be understood that we are maintaining that as 
a necessity of thought we must always demand that physical concepts be defined in 
terms of physical operations. . .’. This is consistent with the present distinction just 
mentioned, between defining relations formed from definitions and from physical laws. 

The sixth logical step has now been discussed. 

3. Combination of dimensions 

It will be noticed from table 1 that all the defining relations, whether definitions or 
physical laws, are in the form of products of quantities: consequences of this now follow. 

In physical analysis, to be meaningful, numerical addition of quantities is required 
to be of quantities measured in the same dimension and referred to a common unit 
quantity:. If this type of addition is to be as a multiplication then the multiplier must 
be a dimensionless number. 

If different quantities of the same concept are multiplied then the constancy of 
relative magnitude will be retained; this is also true of a quantity raised to a power 
and of the product of the quantities of different concepts. If two physical quantities 
of different dimensions are multiplied then the idea of combined dimensions is 
introduced and this combination forms the dimensions of ‘derived’ concepts. It is 
then seen that multiplication and cancellation of dimensions are in accord with the 
dimensional description of ‘derived’ concepts. Cancellation of dimensions occurs, for 
example, when a velocity is multiplied by a time to represent distance, or (L/T)T = L. 

A further point requiring clarification is that this proportionality with unit quantity 
using linear scales only exists if those scales have a common origin for the zero value. 
This explains why temperature scales in Celsius and Fahrenheit cannot be compared 
for the purposes of dimensional analysis whereas those in Kelvin and Rankine can. 
The origin in this case does not have to be the so-called absolute zero: the Celsius 
and Reaumur scales can also be compared if we neglect the difference between the 
melting and triple points of water. Dimensional analysis requires use of linear scales 
and the combination of dimensions as products. Other definitions of ‘derived’ concepts 
that are unacceptable have been discussed previously and in detail (Taylor 1974, pp 
3-4). 

This section has amplified the listed logical steps (vii)-(ix). 

4. Equality of dimensions 

Usage of the equals sign has several meanings which include numerical equality, 
directional identity for a vector concept, and dimensional equality. The equals sign 
as a statement of the first of these does not necessarily imply the others. For example, 
in the relation for work, Fs = AE, whilst there is a directional equality between F and 
s, such is not indicated by the equals sign. Or again, in an atmosphere at constant 
temperature, the pressure in atmospheres is given by 

p = exp( - gMoz/ R T )  

t Esnault-Pelterie (1950) requires them to be of the ‘same physical nature’; this seems much too restrictive. 
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and the dimensional equality is not satisfied. The restriction of addition to quantities 
of like dimension, as just proposed, results in dimensional equality of an equation; it 
is proposed here as a specification to be made when required and is then not a matter 
of proof but of statement. 

The dimensions of ‘derived’ concepts are obtained in two ways. Referring again 
to tablel, for item 1 the dimensions and the unit quantity of velocity are fixed by 
those of length and time. For item 3 the dimensions and unit quantity of the radiant 
energy are chosen arbitrarily, requiring the presence of Planck’s constant. This 
constant then acts as a ‘units conversion factor’ so that dimensional equality is retained. 
This point has been discussed elsewhere. For example, as Klinkenberg (1968) has 
pointed out, in ‘systems’ of units the units conversion factors ‘have been the means 
to make the system consistent’. 

There is then the result that ‘primary’ unit quantities are used to quantify both 
primary concepts and also derived concepts obtained from defining relations without 
units conversion factors, whilst ‘derived’ unit quantities are used to quantify derived 
concepts obtained from defining relations with units conversion factors. 

This discussion covers the listed logical steps (x) and (xi). 

5. The complete equation 

When an equation satisfies an equality of dimensions, the size of the unit quantity 
can be changed without correspondingly either introducing or removing a units 
conversion factor. If the unit quantity is changed by a factor then, for a linear scale, 
the equation is unchanged in algebraic form. Such is what has been called a ‘complete 
equation’ (Bridgman 1943). 

Both Buckingham and later Bridgman used the expression ‘complete equation’. 
The former used it to imply that no variables are omitted, presumably within the 
limits of precision with which the equation models the phenomenon (Buckingham 
1914). He does, however, introduce the equality of dimensions as a separate idea. 
Bridgman in contrast clearly linked the notation of ‘complete equation’ with that of 
equality of dimensions and gives it the meaning, used here, that its algebraic form 
remains unchanged by changes in the size of the unit quantity. But Bridgman and 
other authors do not go as far as to specify a complete equation. For example, 
Bridgman and Sedov (1974) said that physical regularities (laws) are ‘generally 
independent of the particular system of units of measurement selected from among 
a set of such systems. . . . That this should be so is plausible’. ‘. . . it is so exceedingly 
improbable as to be practically impossible . . . if it did depend on one particular system 
of measurement’. 

Bridgman’s order of logic is different from that presented here in that he started 
with the acceptance of the complete equation, then derived the Pi-theorem-which 
is to follow here-and finally deduced equality of dimensions (Bridgman 1943, pp 
37-41). 

The manipulation of complete equations during the generation of solutions is 
limited, through the requirement to retain dimensional equality, to certain operational 
rules. This has been discussed in detail elsewhere (Bridgman 1959, Taylor 1974). 
Addition and multiplication are permissible but other functional operations, such as 
taking logarithms and forming binomial expansions, whilst generally acceptable 
numerically, dimensionally are only permissible if all arguments are non-dimensional: 
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this latter restriction is readily observed from the corresponding series expansions of 
these and like functions. 

Bridgman’s example in support of his discussion (1943) has been repeated by 
others but seems not to be a powerful one. He added U = gt  to s = f g t 2  to get 
U + s = gt + igt’, stating correctly that it is numerically correct. But the latter equation 
could be written as U = u ( s ,  g, t )  which is analytically wrong, there being a surplus of 
independent variables; this point has been discussed elsewhere (Gibbings 1974). 

It will be noticed that the present discussion does not specify the idea that it is 
essential that an equation must be a ‘complete’ one for it to represent validly a physical 
event; numerically this is not so. That idea was put forward by Buckingham and was 
supported by Bridgman. Here, the existence of a ‘complete equation’ is only stated 
as a consequence of the dimensional equality that is specified for the requirements 
of dimensional analysis. 

These points amplify the logical steps (xii) and (xiii). 
The problem of what variables are to be introduced into a functional relationship 

that represents a physical phenomenon, and before the Pi-theorem is used, is resolved 
by the following procedure. 

(a) An understanding of a modelling of the physics enables listing of all the basic 
physical laws involved together with the boundary conditions to those equations; the 
laws must be expressed as ‘complete’ equations. 

(b) Inspection of these equations and boundary conditions enables a listing to be 
made of all the variables and units conversion factors appearing in them. 

(c) Where an equation listed at (a) is a defining relation for a derived quantity 
such as listed in table 1, the equation will contain the corresponding units conversion 
factor. There exists then, at choice, an ability to redefine the unit quantity of the 
derived concept in terms of those utilised in its derivation and hence deleting the 
units conversion factor from the list of (b) above. 

Whilst this routine might appear to be straightforward there are problems in its 
application. These have been illustrated by examples elsewhere (Gibbings 1980, 
1981). 

The discussion now covers the listed logical steps (xiv) and (xv). 

6. The Pi-theorem of regrouping 

The principle theorem of dimensional analysis, known as the Pi-theorem, applies only 
to equations having equality of dimensions and subject to the operational rules 
described. It is now demonstrated anew and illustrated by specific examples. 

For N variables, say Q1, Q2,. . . , QN, there is 

f(Q1, 0 2 ,  . , QN) = 0 (1) 
which is to be a ‘complete’ equation. Each variable can have its dimensions expressed 
in terms of the dimensions, say D1, D2, . . . , D,, so that, according to the foregoing 
rules for combination of dimensions, a tabulation can be as in table 2. Here, the a,, 
are non-dimensional numbers. For one or more i, some or all of a,, could be zero. 

The variable Q, is now used to cancel the dimension in D1; tabulation now is as 
in table 3. Equation (1) can be rewritten, within the prescribed operational limits to 
retain a ‘complete’ equation, as 

f{(Q?l/Q;’l ) Q P ” ,  . . . , Q,, . . . , ( Q Z I / Q P N I ) Q P N 1 }  = 0 
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Table 2# 

Variable Dimension 

Q1 D7"D;12. .  . DCjn 
Q 2  DT11D;22. .  . D;ln 

QN D : N ' D ; N 2 . .  . DZNn 

Table 3. 

Variable Dimension 

or 

Inspection of table 3 shows that Qi is now the only variable in equation (2) that 
contains a dimension in D1. The argument now is that, if the operational limits on 
the algebraic manipulation are satisfied, Qi can only appear in such a way in equation 
(2) that if the dimensions cancel then so also can there be a numerical cancellation 
of Qi. Thus equation (2) reduces to 

f i { Q ~ i ' / Q 9 ' ' , .  . . , Q:'/Q9N1}=0.  

This process may be continued for successive cancellations of D2,& . . . D, until 
there are no more dimensions left for cancellation, all the groups of variables then 
being non-dimensional: there is nothing mandatory about this completion, prior stages 
give equally valid equations. 

If all the air are non-zero then, with exceptions to be described, each time a 
cancellation is made: 

(a) one variable is added, by multiplication, to each group of variables; 
(b) one dimension is removed. 

Thus from (b) there will be a total of n cancellations and after all these possible 
cancellations each group will contain (1 + n) variables and there will be (N - n )  groups. 
This is the present proof of the Pi-theorem. 

If one of air is zero, say ai" then the dimensions of the group with Q, will not 
contain D,. A cancellation will not be needed so that this group will contain only 
(1 + n) - 1 = n variables. 

If, at the first set of cancellations?, the condition 

t The order of the dimensions, D, is arbitrary. 
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for all j = 1,2, . . . , N ( j  = i is a trivial case) is satisfied, then this first cancellation will 
also cancel the dimension D,. Thus now the number of groups will be (N - n )  - 1 = 
N - n - 1 because there will be one fewer set of cancellations. 

Before further discussing the foregoing proof its application is illustrated by 
examples. 

For the impact force, F, of a jet of liquid at the position where the jet is breaking 
up we write, as a ‘complete’ equation, 

f (F,  P, v, 4 CL, U )  = 0. (4) 

The reduction of this equation to a function of non-dimensional groups follows the 
procedure of the preceding proof. It can be tabulated conveniently as in table 4. 

Table 4. 

~ ~ ~~~ 

K F P V I CL U 

M L J T ~  MIL’ LIT L M JLT M J T ~  

1 FlP 
L4JT2 

2 FIpV2 
L2 

3 F/pV212 
1 

V 
LIT 

I 
L 

CLIP 
L ~ I T  

k 3 3 3 

Then from this table the reduction of equation (4) is finally to 

f{F/pV212, FIpVl, a/pV21} = 0. ( 5 )  

(a) The number of variables, N, less the number of levels of cancellation, say K, 

(b) The number of cancellations for each group, say k,  is equal to the number of 

(c) The number of variables in each group, say m, is given by m = k + 1.  
(d) The value of K and hence of G is independent of the order of cancellation 

of the n dimensions because each dimension requires one cancellation in turn. 
A second example is one that was given by Buckingham (1914) because it presents 

special difficulties. It is of the energy per unit volume, U, of an electromagnetic field. 
Proposing that 

Conclusions for this particular example are as follows. 

equals the number of non-dimensional groups, say G.  Or, G = N - K.  

dimensions, n. Or, k = n and also k = K .  

f ( U ,  E, H, E ,  CL) = 0 

gives the derivation in table 5 .  
The conclusions from this example are now that 
(a) G = N - K  
(b) K < n  
(c) k s K 
(d) m = k + l = s K + l .  
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Table 5. 

K U E H E CL 

MILT2 MLJAT’ A I L  A2T‘JML3 MLJA2T2 

1 Ul CL EJCL H &CL 
A2JL2 AJT AJL T2JL2 

A2JL2 AIL  AIL  

1 1 

k 2 3 

2 UJCL E ( E I c ( ) ” ~  H 

3 UJ CLH (E/ H E J  CL ) ’ I 2  

Now the dimensions can be taken as effectively being those of the three cancelling 
quantities, that is 

ML/A2T2, T2/L2, A I L  
which can be simplified to 

MIL3, T/L, AIL. 

Again, the number of independent groups obtained is independent of the order of 
cancellation of the three dimensions. 

From the foregoing general demonstration of the Pi-theorem, and the illustrative 
examples, general conclusions are: 

(i) G = N - K  
(ii) m = k + 1 
(iii) K s n 
(iv) k 6 K. 

The discussion has now covered the logical step (xvi). 

7. Existing proof of the Pi-theorem 

The foregoing routine for reduction to non-dimensional groups, as distinct from the 
present proof of the Pi-theorem, is markedly similar to that described by Taylor 
(1974). Taylor made the important point that this method always results in a set of 
non-dimensional groups that is correct both in the number of groups and in the 
composition of each, and thus avoids the difficulty of some other methods in the prior 
determination of the number of independent dimensions (Taylor 1974, p 29) and of 
the permissible dimensions (Buckingham 1914, p 349 L1 3-4 ) .  Thus existing methods 
have, for some examples such as the second one just given, raised practical difficulties 
in arriving at the correct number of non-dimensional groups, and so have led to means 
for determining these groups such as that described by Van Driest (1946). But, as 
Taylor has pointed out (1974, p 29), such discussions do not always lead to a 
determination that is straightforward. 

As a proof, a comparison is now made of the present derivation with existing ones 
of which there are four basic variants. 
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A first version relies on the initial functional relation, such as that of equation ( l ) ,  
being in the form of a power product of the variables. This provision was used by 
Rayleigh (1885). This serious limitation was relaxed to a degree by Buckingham 
(1914), who specified that the function was to be represented by a finite series of 
power products. Both Focken (1953) and Massey (1971, p 55) justify this approach 
by reference to the Weierstrass approximation theorem, and so again this approach 
is approximate and requires the existence of a function that is continuous and so is 
not general. In presenting this version, Buckingham additionally separated all those 
variables having a common dimension and, dividing by one of them, expressed them 
as dimensionless ratios before proceeding to apply the Pi-theorem to the remaining 
variables. Neither the advantage nor the need for this procedure is clarified by such 
writers and is, indeed, not required by the present proof and method. 

A second approach is that discussed, for example, by Birkhoff (1960, § 64) and is 
to express equation (1) as an infinite Maclaurin series. As not all examples are 
expressible in series form because of singularities, as indeed Birkhoff points out (1960, 
p 94), and as convergence of the series does not necessarily exist, there is again a 
limitation of application. 

A third approach makes use of the concept of the invariance of a ‘complete 
equation’. Birkhoff illustrates this (1960) by the example of the resistance of a closed 
body in a flow. Putting 

A change in the size of the unit quantity can then be made in turn so as to give a 
numerical value of unity to each of p, V and 1. Taylor (1974) describes this as a use 
of units that are intrinsic to the problem rather than a use of extraneous units. It is 
then stated that equation (6) can be replaced by 

(7) f{DlpV212, d p V L  1 , 1 , 1 >  = 0 
so that 

f{D/pV212, p/pVl) = 0 .  

This demonstration is basically that presented by Langhaar, who points out (195 1 ,  
p 55)  that his proof both limits the independent variables to having positive values, 
and (Langhaar 1951, p 58) requires that in the final formulation a Pi-group is to be 
a single-valued function of the other Pi-groups: neither of these serious limitations 
appears in the present proof. 

A further difficulty with this third approach arises from the transformation between 
equations (6) and (7). An equation that represents a real physical event is understood 
to be a description of the relation between variables that retains truth as these variables 
change in numerical value, these values being related to fixed values of each and every 
unit quantity: it is a matter of semantics. A fixed linear transformation applied to 
such an equation retains this meaningful representation by the transformed ewation. 
But the transformation between equations (6) and (7) is one that must change 
continuously as the last three variables of equation (6) are each continuously changed: 
this has the effect of continuously changing the unit quantity of these variables. Then 
the representation is no longer meaningful as just described and also a constancy of 
relative magnitude is not retained. 
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Finally, a fourth approach, such as by Bridgman (1959), relies on the function of 
equation (1) being differentiated in turn with respect to each and every one of the 
variables. But the differentiability of a function is not generally demonstrable. 
Esnault-Pelterie (1950) advanced further detailed criticisms of Bridgman’s proof by 
use of an example ascribed to Villat. 

8. Concluding comments 

The logical steps in dimensional analysis, from the basic idea of definition of a primary 
concept up to the Pi-theorem, are set out. In general, the existing literature does not 
set forth a complete listing of logical steps and, further, where some steps have been 
delineated they differ in the order from that proposed here. Certain steps here differ 
from other presentations; for example, the idea of distinguishing between primary 
and derived concepts, the former being helpful to philosophy; also the idea that 
dimensional equality is something not to be inferred but to be specified for the purposes 
of dimensional analysis. 

Finally, a derivation of the Pi-theorem is given that avoids limitations of existing 
methods. The routine of operation of the theorem is very similar to an existing one 
and is straightforward even in otherwise difficult examples. Experience has shown 
that both this proof of and the routine for the Pi-theorem are acceptable for use at 
an elementary stage of instruction whereas many existing texts, even specialised ones 
on dimensional analysis (Massey 1971, Pankhurst 1964), often omit a proof, quoting 
only the result of this theorem. 
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Notation 

SI quantities: 
M mass 
L length 
T time 
8 temperature 

A current 
C light intensity 
n amount 
Q angle 

Symbol Meaning Symbol Meaning 

Acceleration 
Mean velocity 
Drag 
Dimensions 
Electric field 
Kinetic energy 
Luminous energy 
Radiant energy 
Frequency 
Force 
Gravitational acceleration 
Inertia constant 
Number of non-dimensional groups 
Planck constant 
Magnetic field strength, power 
Current 
Mechanical equivalent of heat 
Number of cancellationsfora group 
Boltzmann constant 
Number of levels of cancellation 
Length 
Mass 
Number of variables in a group 
Molecular mass 
Number of dimensions 
Number of variables 
Pressure 

PO 
4 
Q 
Qi 

r 
R 
S 
t 
T 

U 
V 
z 
Q i r  

U 

Q 

80 
Y 
E 

EO 

A 
CL 

CL0 

P 

r 

Mechanical equivalent of light 
Charge 
Heat, quantity 
Variables 
Radius 
Gas constant 
Distance, length 
Time 
Temperature 
Velocity 
Energy of electromagnetic field 
Velocity 
Height 
Index 
Angle 
Angle constant 
Gravitational constant 
Permittivity 
Permittivity of space 
Amount of gravity 
Luminous flux 
Coefficient of viscosity, magnetic 
permeability 
Magnetic permeability of space 
Density 
Surface tension 


